Mr. Cox's Algebra 2 Spring Final Exam

Polynomials I.

Factor the following completely.

1.
$$4x^2 - 25$$

2.
$$8x^3 + 27$$

3.
$$x^3 - x^2 - 4x + 4$$

Use long division to determine that the given polynomial is a factor of f(x). Use the result to factor f(x) completely.

4.
$$f(x) = (x^3 + x^2 - 4x - 4) \div (x - 2)$$

Perform the requested operations on the functions.

$$f(x) = 2x - 5$$

$$f(x) = 2x - 5$$
 $g(x) = x - 3$

6.
$$(g + f)(x)$$

II. **Graphing Polynomials**

For each polynomial below, determine the degree, end behavior, and type of roots. If the polynomial is not factored, factor it first.

7.
$$f(x) = (x-2)(x+3)$$

8 $f(x) = x(x-4)^2$

Degree: _____

Degree: _____

Leading coefficient: _____

Leading coefficient:

Roots: _____

Roots: _____

9.	f(x)	= -(x – 2	()3

Degree: _____

Leading coefficient: _____

Roots:

10. $f(x) = -x^2(x-4)^2$

Degree: _____

Leading coefficient: _____

Roots:

Use the information given to write the polynomial function.

11. A cubic equation with x-intercepts at -1, 1, and -2.

III. Rational Functions

<u>Find the domain, vertical asymptotes, and horizontal asymptotes for the following rational functions.</u>

$$f(x) = \frac{6}{x-4}$$

Domain:_____

VA:_____

HA:_____

$$f(x) = \frac{-2x+7}{x}$$

Domain:_____

VA:_____

HA:_____

14.
$$f(x) = \frac{5x^2 + 1}{x + 3}$$

Domain:_____

VA:_____

HA:_____

15.
$$f(x) = \frac{x^3 - 4}{2x^2 + 11x - 6}$$

Domain:_____

VA:_____

HA:_____

Match the rational function with its graph.

16.
$$f(x) = \frac{x}{x-1}$$

17.
$$f(x) = \frac{2}{x^2 - 9}$$

16.
$$f(x) = \frac{x}{x-1}$$
 17. $f(x) = \frac{2}{x^2-9}$ 18. $f(x) = \frac{x+1}{(x-2)(x+3)}$

19.
$$f(x) = \frac{x+3}{x}$$

20.
$$f(x) = \frac{x-2}{(x+1)(x-4)}$$
 21. $f(x) = \frac{4}{x(x+2)}$

21.
$$f(x) = \frac{4}{x(x+2)}$$

Rational Expressions IV.

Simplify the following.

$$22. \ \frac{x^2 - 8x + 12}{x^2 + 3x - 10}$$

23.
$$\frac{x^2 - 7x - 8}{3x^2 - 24x} \cdot \frac{4x^3}{x^2 - 1}$$

$24. \frac{5x^2 - 20}{25x^2} \div \frac{x^2 + 6x + 8}{x^2 + 10x + 24}$	$25. \frac{3x}{4yz} + \frac{6}{24y^2}$

V. Graphing Quadratics, Square Roots, Cubics, and Cube Roots

Write the equation of the following.

26. Start with $y = \sqrt{x}$. Shift it 1 unit left, 2 units down, and reflect it across the x-axis.

y = _____

27. y = _____

Write the equation of the following.

28. Start with $f(x) = x^3$. Vertically stretch it by a factor of 3 and shift it down 6.

29. y = ____

VI. Radicals and Rational Exponents

Simplify the following radical expression.

30.
$$\sqrt[3]{32} + \sqrt[3]{108}$$

$$31.\sqrt{200} - 3\sqrt{32} + 2\sqrt{98}$$

Rewrite each expression using rational (Fractions) exponents.

$$33.\sqrt[5]{3^3}$$

Rewrite each expression using radicals.

Solve for x.

36.
$$2x^{\frac{5}{3}} = -64$$

37.
$$3(x+1)^{3/2}+4=28$$

VII. Exponents

Simplify the following.

$$38. \frac{x^3y^4}{4} \cdot \frac{6x}{y^{-1}}$$

$$\frac{2ef^8g^{-2}}{e^2fg^6}$$

Solve the following:

40.
$$(3^x)^2 3^4 = 3^8$$

41.
$$8^38^x = 8^5$$

42. 3 ^X = 81	43. $2^{2x-3} = 32$

Use these formulas to set up the following problems.

$$A = P \left(1 + \frac{r}{n}\right)^{nt} \qquad \qquad A = P \left(1 - \frac{r}{n}\right)^{nt}$$

44.If a person deposits \$5000 into an account that pays 10.25% compounded semiannually, how much will they have after 8 years?

45.If a person deposits \$5100 into an account that pays 8.5% compounded quarterly, how much will they have after 25 years?

VIII. Connecting Exponentials and Logarithms

Write the equation of each of the following.

46. Start with y = 2^x. Shift left 1, down 7, and shrink by a factor of .5

47.

48. Start with $y = log_2 x$. Reflect across the x-axis, stretch by a factor of 2, shift right 4, and down 3.

49.

50. $\log_4 64 = 3$

51. $\log_8 2 = \frac{1}{3}$

Express each exponential equation in logarithmic form.

Express each logarithmic equation in exponential form.

52. $2^5 = 32$

53. $64^{-\frac{1}{3}} = \frac{1}{4}$

Evaluate the following logarithmic expressions.

$$55.\log_{64} 4 =$$

IX. Logarithms

Expand each expression.

57.
$$\log_3 \frac{(ab)^4}{c}$$

Solve each of the following.

58.
$$\log_3 x + \log_3 5 = 2\log_3 10$$
 59. $3\log_2 x - 8 = 4$

$$60.\log_3(1-8v)=2$$
Bonus. $10^{2x}=57$